Comment courber l'espace-temps avec des électroaimants

André Füzfa Université de Namur

Basé sur Physical Review D 93, 024014 (2016) arXiv:1504.00333

Pile Betavoltaique

Générateur électrique radioisotope

Toutes ces technologies utilisent des forces fondamentales

Réacteur à fusion nucléaire

Soudure à l'arc électrique

Les générateurs de gravité: Une technologie de la science-fiction

Contact: Machine à trous de vers

Star Wars: Hyperdrive

TIL

Retour vers le futur: Convecteur temporel

Star Gate SG1: Porte des étoiles

Superman: Machine à gravité

Les Nouveaux Héros: portails

Star Trek: Générateur de gravité

Les générateurs de gravité en relativité générale

Le principe d'équivalence d'Einstein

Universalité de la chute libre

Il n'y a pas moyen de distinguer localement une accélération d'un champ de pesanteur

La géométrisation de la gravité

★ Universalité de la chute libre: le mouvement est une propriété géométrique

★ Le champ gravitationnel est une matrice métrique

1 potentiel newtonien V \square 10 potentiels relativistes $g_{\mu\nu}$

★ Quels sources pour le champ gravitationnel?

Gravitation de Newton:

Masse d'inertie

Gravitation d'Einstein:

Masse d'inertie +? pressions? De toutes sortes?

Invariance de position locale

Toute conclusion expérimentale valide doit pouvoir être reproduite indépendamment de la position et de l'époque

Sur Terre, aujourd'hui

A long time ago, In a galaxy far, far away

c=299792458 m/s α= 0.007297... G=6.67384x10⁻¹¹ m³/(kg.s²) Etc.

c=299792458 m/s α= 0.007297... G=6.67384x10⁻¹¹ m³/(kg.s²) Etc.

C'est aussi vrai pour la gravité!

Le principe d'équivalence fort

Expérience de Cavendish

Μ

Μ

Les expériences gravitationnelles impliquent tous les types d'énergie de liaison

Invariance de position locale:

Tous les types d'énergie, y compris gravitationnelles, produisent de la gravitation avec la même intensité

Les générateurs de champ magnétique sont donc aussi des générateurs de gravité

Les équations d'Einstein de la relativité générale

★ Equations d'Einstein avec matière et électromagnetisme

Courbure de l'espace-temps

 $\frac{1}{2}Rg_{\mu\nu}$

 $R_{\mu\nu}$ –

Equivalence: Tout type d'énergie, ★ Source électromagnetique. la même intensité constante

 $= -\frac{8\pi G}{c^4} \left(T_{\mu\nu}^{(\text{mat})} + T_{\mu\nu}^{(\text{em})} \right)$

 $\begin{pmatrix} \epsilon_0 E^2 + B^2/\mu_0 & \overrightarrow{S}/c \\ \overrightarrow{S}/c & M_{3\times 3} \end{pmatrix}$

Tenseur énergie-impulsion Électromagnetique

Avec S le vecteur de Poynting et M le tenseur des contraintes de Maxwell

Les équations de Maxwell en espace-courbe

- ★ Quadri-potentiel électromagnetique $A^{\mu} = \left(V/c, \vec{A} \right)$ (sgn(g)=(+,-,-,-)): ★ Tenseur de Faraday (F=dA): $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$
- ★ Premier groupe des équations de Maxwell (par construction: dF=d²A=0)
- $\nabla_{\alpha}F_{\beta\gamma} + \nabla_{\gamma}F_{\alpha\beta} + \nabla_{\beta}F_{\gamma\alpha} = 0 \quad \forall \vec{\nabla} \bullet \vec{B} = 0$ $\star \text{ Quadri-densité de courant: } J^{\mu} = \left(c\rho_{Q}, \vec{J}\right)^{\mu}$

 $\vec{\nabla} \bullet \vec{E} = \rho_Q / \epsilon_0$

 $\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \partial_t \vec{E}$

★ Second groupe des équations de Maxwell

Dérivée covariante (courbure)

 $\nabla_{\mu}F^{\mu\nu} = \mu_0 J^{\nu}$

Le système Einstein-Maxwell (EM) \star Equations d'Einstein: $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = -\frac{8\pi G}{c^4} \left(T^{(\text{mat})}_{\mu\nu} + T^{(\text{em})}_{\mu\nu} \right)$ $T^{(\rm em)}_{\mu\nu} = -\frac{1}{\mu_0} \left(g^{\alpha\beta} F_{\mu\alpha} F_{\nu\beta} - \frac{1}{4} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right)$ Tenseur énergieimpulsion Électromagnetique $F_{\mu u}=\partial_{\mu}A_{ u}-\partial_{ u}A_{\mu}$. Tenseur de Faraday \star Pur système Einstein-Maxwell $T^{(mat)} = 0$ and (em) $0 \Rightarrow R = 0$ $\nabla_{\mu}F^{\mu\nu} = \mu_0 J^{\mu\nu}$ $R_{\mu\nu}$ **Maxwell equations Einstein equations** with J^{ν} current density

Quelques résultats analytiques

- Espace-temps avec des champs électriques/magnétiques uniformes:
 - → Solutions statiques, à symétrie axiale et cosmologiques (globales) : Levi-Civita,1917 ; Bertotti, 1959 ; Robinson, 1959 ; Bonnor, 1954 ; Melvin, 1964 ; Peblansky & Hacyan, 1979
 - \rightarrow Pas asymptotiquement plates

★ Le trou noir chargé:

- \rightarrow Sans rotation : Reissner, 1916 and Nordström, 1918
- \rightarrow En rotation: Kerr-Newman, 1965
- → Asymptotiquement plate

\star Fil rectiligne infini parcouru par un courant continu

- → Mukherjee, 1938 ; Witten, 1962
- → Pas asymptotiquement plates (divergence des champs de métrique à l'infini)

Quelques résultats analytiques

★ Théorème de Bonnor (1953):

- → Correspondance duale entre solutions électrostatiques et magnétostatiques solutions à l'extérieur des sources
- → Preuve de l'existence d'une solution pour les boucles de courant et comportement asymptotique partiel pour le dipôle magnétique

Des solutions asymptotiquement plates en symétrie axiale?

- ★ Boucles de courant en relativité générale (Bonnor, 1960):
 → Équations du champ et solution analytique particulière
- ★ Solénoïde infiniment long dans le régime en champ faible (Ivanov, 1994)
 - Solutions du système Einstein-Maxwell complet pour des boucles de courant et des solénoïdes portant des courants électriques arbitrairement grands?

Modéliser des électroaimants en relativité générale

★ Espace-temps axisymétrique en coordonnées cylindriques
 ★ Etant donné J_φ(r,z), 3 inconnues: A_φ=a(r,z)/r, g_{tt}(r,z); g_{rr}(r,z)
 ★ Phénoménologie des équations d'Einstein-Maxwell :

 $(B_z^2 - B_r^2)$

 \rightarrow Courber l'espace-temps avec du magnétisme :

Equations de Poisson sourcées Par les densités et les pressions magnétiques

 $\overline{\partial_r^2 + \partial_r/r} + \partial_z^2$

→ Magnétisme en espace courbe:

 $\frac{8\pi G}{c^4 \mu_0}$

 $g^2 g_{rr} \sim \frac{8\pi G}{c^4 \mu}$

 $abla^2 g_{tt}$

Equations du champ

★ Choix de jauge pour la métrique et le potentiel EM : $ds^{2} = c^{2} e^{\rho(r,z)} dt^{2} - e^{\lambda(r,z)} \left(dr^{2} + dz^{2} \right) - e^{-\rho(r,z)} r^{2} d\varphi^{2}$ $A = \frac{a(r,z)}{d\varphi}d\varphi$

Equations d'Einstein:

$$\nabla^2_{(r,z)}\rho = \frac{8\pi G}{c^4\mu_0} \frac{e^{\rho}}{r^2} \left(\left(\partial_r a\right)^2 + \left(\partial_z a\right)^2 \right)$$

$$\begin{split} & \sqrt{2}_{(r,z)} \lambda + (\partial_z \rho)^2 = \frac{\partial \log c}{c^4 \mu_0} \frac{\partial}{r^2} \left(\left(\partial_r a \right)^2 - \left(\partial_z a \right)^2 \right) \\ & \text{Equation de Maxwell } (\mathsf{J} = \mathsf{J}^{\varphi}): \end{split} \quad \text{Magnétism} \end{split}$$

Magnétisme sur espace courbre

Densité d'énergie

magnétique

 $\nabla_{(r,z)}^2 a - \frac{z}{r} \partial_r a = -\left(\partial_r a \partial_r \rho + \partial_z a \partial_z \rho\right) - r \mu_0 J$

L'équation de Maxwell en espace courbe $\nabla_{(r,z)}^2 a - \frac{z}{r} \partial_r a = -\left(\partial_r a \partial_r \rho + \partial_z a \partial_z \rho\right) - r \mu_0 J$ Décomposition du potentiel vecteur: $a=a_{
m nr}+a_{
m rel}$ **\star** Equation de Maxwell non-relativiste : (background plat $\rho = \lambda = 0$) $\nabla_{(r,z)}^2 a_{\rm nr} - \frac{z}{r} \partial_r a_{\rm nr} = -r\mu_0 J$

★ Sources pour a_{nr}:

 \rightarrow **Boucle de courant** : anneau infiniment mince (J~ δ (z). δ (r-l))

 \rightarrow **Solénoïde**: feuillet infiniment fin (J~ δ (r-l) for z in [-L/2;L/2])

→ Solutions classiques en termes des fonctions elliptiques complètes de première, seconde et troisième espèces

→ peut aussi être obtenue par la loi de Biot-Savart

 \rightarrow évite de devoir manipuler des sources ponctuelles

Equations du champ sans dimension ★ Boucle de courant de longueur I : u=r/I, v=z/I, $a'=a/(\mu_0 I I)$ ★ Solénoide de longueur L et de rayon l: v=z/L, a' = a /(μ_0 I nL l) ★ 3 EDPs non-linéaires elliptiques couplées adimensionnées $\nabla^2 \rho = \mathcal{C}_I \frac{L^2}{l^2} \frac{e^{\rho}}{u^2} \left(\left(\partial_u (a_{\rm nr} + a_{\rm rel}) \right)^2 + \frac{l^2}{L^2} \left(\partial_v (a_{\rm nr} + a_{\rm rel}) \right)^2 \right)$ $\nabla^2 \lambda + \frac{l^2}{L^2} \left(\partial_v \rho\right)^2 = \mathcal{C}_I \frac{L^2}{l^2} \frac{e^{\rho}}{u^2} \left(\left(\partial_u (a_{\rm nr} + a_{\rm rel})\right)^2 - \frac{l^2}{L^2} \left(\partial_v (a_{\rm nr} + a_{\rm rel})\right)^2 \right)^2$ $\nabla^2 a_{\rm rel} - \frac{2}{u} \partial_u a_{\rm rel} = -\left(\partial_u (a_{\rm nr} + a_{\rm rel}) \partial_u \rho + \frac{l^2}{L^2} \partial_v (a_{\rm nr} + a_{\rm rel}) \partial_v \rho\right)$ ★ Couplage magnétogravitationnel $C_I = \frac{8\pi G}{c^4} \mu_0 I_{\text{tot}}^2 = 8\pi \left(\frac{I_{\text{tot}}}{I_{\text{Pl}}}\right)^2$ **Courant de Planck :** $I_{\rm Pl} = \frac{c^2}{\sqrt{G\mu_0}} = 9.8169 \times 10^{24} A$

Conditions de bord

- ★ Conditions de régularité en r=0: composantes radiales des gradients nulles sur l'axe * Platitude asymptotique : champ gravitationnel autour
 - d'un dipôle magnétique:

 $a_{\rm rel} \sim 0$

Avec d la distance $\sim rac{\mathcal{C}_{\mathcal{I}}}{32} rac{L^4}{l^4} rac{v^2}{d^6}$ At euclidienne

 $4d^{8}$

 \star Champs gravitationnels non monopolaires

 $\lambda \sim \frac{\mathcal{C}_{\mathcal{I}}}{16} \frac{L^2}{l^2} \left[2\frac{u^2}{d^6} - \frac{L^2}{l^2} \frac{v^2}{2d^6} - \frac{9u^4}{4d^8} \right]$

★ Relaxation method: $\nabla^2 \rho^{(n+1)} = S_1 \left[\rho^{(n)}, a_{\text{rel}}^{(n)} \right]$, etc.

- \rightarrow 3 PDEs for 3 unknowns: ρ , λ , a_{rel}
- \rightarrow Initial guess (n=0): non-relativistic solution
- \rightarrow at each step n, solve a set of <u>linear</u> inhomogeneous elliptic PDEs
- \rightarrow stop when relative updates below tolerance threshold
- Fourier decomposition with cosines (regularity conditions):

$$f(u,v) = \sum_{k=0}^{N} \hat{f}_k(u) \cos\left(\frac{k\pi}{V}v\right) ; \ (u,v) \in [0,U] \times [-V,+V]$$
$$\hat{f}_k(u) = \frac{1}{V} \int_{-V}^{V} f(u,v) \cos\left(\frac{k\pi}{V}v\right) dv$$

* Boundary value problem for each Fourier mode at each step n: $\frac{d^2\hat{\rho}_k}{du^2} + \frac{1}{u}\frac{d\hat{\rho}_k}{du} - \frac{l^2}{L^2}\left(\frac{k\pi}{V}\right)^2\hat{\rho}_k = \hat{S}_{k,1}(u)$

Numerical method (2/2)

Convergence of the relaxation algorithm

Courber l'espace-temps avec des électroaimants

★ Equations d'Einstein adimensionnées:

 $g_{rr} - g_{tt} - C_I$

Couplage magnétogravitationnel

Courant de Planck: $I_{\rm Pl} = \frac{c^2}{\sqrt{G\mu_0}} = 9.8169 \times 10^{24} A$

* Analogue à la compacité pour les objets avec masse d'inertie: $\frac{GM}{g_{\rm rr} \sim g_{\rm tt}} \sim s = \frac{GM}{c^2 R}$ (invariance conforme)

Les seuls champs gravitationnels que l'on peut espérer générer seront extrêmement faibles!

Starfleet utilise-t-il des générateurs magnéto-gravitationnels ?

USS Enterprise

Anneau de courant électrique

Magnétisme sur espace courbe

★ Les champs magnétiques ressentent le champ de pesanteur

r (m)

 $\nabla a \bullet \nabla g_{tt}$

terrestre

 $\nabla^2 a \sim -r\mu_0 J_{arphi}$ -

Accélération de pesanteur

Magnétisme sur espace courbe

★ Le champ magnétique ressent le champ de pesanteur dû à la masse d'inertie de l'aimant

 $\vec{\nabla}^{r\,(m)}_{a} \bullet$

-20

 $\nabla^2 a \sim -r\mu_0 J_{\varphi}$

Champ de pesanteur permanent de l'aimant

8

Détection de champs gravitationnels artificiels

★ Défi expérimental:

$$\mathcal{C}_I \sim \left(rac{I_{ ext{tot}}}{10^{25}}
ight)$$

- ★ Effets sur la lumière:
 - → le champ magnétique affecte classiquement la lumière via la courbure de l'espace-temps qu'il génère
 - \rightarrow Effet Einstein: décalage en fréquence gravitationnel
 - \rightarrow Décalage de phase (ou time delay Shapiro effect)
 - \rightarrow Polarisation
 - \rightarrow Déflexion

★ Autre canaux possibles (directs ou indirects):

- \rightarrow Déflexion de particules neutres
- \rightarrow Rayonnement synchrotron
- \rightarrow Effet Aharonov-Bohm
- → Interférométrie atomique/neutronique

Détection interférométrique

★ Décalage de phase de la lumière (« Shapiro effect »)

$$\Delta \Phi = \frac{1}{2} \int_{\gamma} h_{\mu\nu} K^{(0)\nu} dx^{\mu} = \frac{\pi}{\Lambda} \int_{0}^{\mathcal{L}} \left(h_{tt}(0,z) - h_{rr}(0,z) \right) dz$$

→ h_{µv}: métrique perturbée; K^v: vecteur d'one non perturbé ; Λ: longueur d'onde

★ Observable cumulative le long de la trajectoire: amplification dans des cavités optiques

★ Même observable que pour la détection d'ondes gravitationnelles
 ★ Influence de la géométrie de l'aimant:

$$\nabla^2 (h_{tt} - h_{rr}) \sim \frac{8\pi G}{c^4 \mu_0} |B_r|^2$$

★ Compromisà trouver entre l'amplitude générée et le seuil de détection

Un dispositif expérimental possible:

Bobines de Helmholtz 🛥

Light source

Toward detector

Interféromètre de Michelson avec des cavités Fabry-Pérot Pour augmenter le chemin optique dans le champ gravitationnel

- Fabry-Pérot Cavities

Dépend de la géométrie de l'aimant

d ϕ /dz~h_{tt}-h_{rr}

r (m).

z (m)

B (T

-12

10

Anti-Helmholtz coil

Application : nouveau test de la relativité générale

- \star Tests astrophysiques :
 - ightarrow Solar system (Shapiro effect, perihelion shift and ephemerides)
 - \rightarrow Lunar laser ranging
 - \rightarrow Neutron star physics
 - \rightarrow Compact binary systems & Pulsar timing
 - \rightarrow Cosmology: Big Bang Nucleosynthesis, Cosmic Microwave Background
 - \rightarrow Quasars absorption spectra
 - \rightarrow Stellar constraints
 - \rightarrow Gravitational waves
 - \rightarrow Supermassive black holes

Application : nouveau test de la relativité générale

- \star Laboratory and space tests:
 - \rightarrow Eötvös experiments (torsion pendulum)
 - \rightarrow Oklo natural nuclear reactor and meteorite dating
 - \rightarrow Atomic clocks and maser
 - \rightarrow Universality of free fall of test masses, atoms, photons
 - \rightarrow Neutron interferometry (Colella-Overhauser-Werner experiments)
 - \rightarrow atomic interferometry
 - \rightarrow frame dragging

La plupart des tests de la RG sont basés sur

- \rightarrow les énergies de liaison de systèmes composites
- → des champs gravitationnels permanents créés par les masses d'inertie
- ★ Les champs magnétiques intenses :
 - \rightarrow test spécifique exclusivement sur la gravitation et l'électromagnétisme
 - \rightarrow matière relativiste (cf. intérieur des étoiles à neutrons)
 - \rightarrow des champs gravitationnels non permanent

Masse d'inertie ou champ gravitationnel terrestre

Exemple : théorie de Kaluza-Klein

★ « Unification » gravitation-électromagnétisme:

 \rightarrow Kaluza-Klein (1920s): compactification d'une dimension supplémentaire

$$\bar{g}_{AB}^{(5)} = \begin{pmatrix} g_{\mu\nu}^{(4)} + \phi^2 A_{\mu} A_{\nu} & \phi^2 A_{\mu} \\ \phi^2 A_{\mu} & \phi^2 \end{pmatrix}$$

 → Dilaton φ: variation du couplage gravitationnel et électromagnétique
 → Caractéristique commune aux limites basse énergie des (nombreuses) théories des cordes compactifiées

 Fortes contraintes d'origine gravitationnelle sur la masse du dilaton

★ Pas de contraintes impliquant l'électromagnétisme uniquement
 → pas un problème de magnétostatique mais un problème de RG mais à 5D

Electroaimants en théorie de Kaluza-Klein

★ Phénoménologie

 $\nabla^2 g_{tt} \sim \vec{\nabla} g_{tt} \bullet \vec{\nabla} \phi$

Modified Poisson equations

Dilaton equation

 $\nabla^2 \phi \sim \phi^2 B^2$ — Dilator Loi d'Ampère dans la théorie de Kaluza-Klein :

 $\nabla^2 g_{rr} \sim \phi^2 B_r^2$

$$\nabla^2 a \sim -\frac{\tau}{1} \mu_0 J_\varphi - \vec{\nabla} a \bullet \vec{\nabla} (g_{tt} + \phi)$$

Loi d'Ampère en relativité générale

no conformal invariance

$$\nabla^2 a \sim -r\mu_0 J_\varphi - \vec{\nabla} a \bullet \vec{\nabla} g_t$$

Kaluza-Klein vs General relativity Test de la loi d'Ampère

0.3 0,4

0.6

0.5

Preliminary results

 $\mu_0 J_{arphi}$

The magnetic field generated by the current depends on the theory!

Kaluza-Klein vs General relativity

dø/dz~h_{tt}-h_{rr}

0.2

. 0.1

Θ.

.0.3.

r (m)

·0.4

General Relativity

 $\times 10^{-37}$

. 0.6-

D.5

Application to astrophysics : magnetars ★ Neutron stars with ultra-strong magnetic fields (B~10⁸-10¹¹ T)

Known magnetar candidates

Source: http://solomon.as.utexas.edu

Magnetar candidate around the galactic centre (Sgr A* Source : NASA Chandra

★ Additional spacetime curvature due to magnetic energy will contribute to gravitational lensing and quantum effects on polarization

★ For R~20km, magneto-gravitational coupling C_{I} ~10⁻¹² – 10⁻⁶

Effets gravitationnels dans les électroaimants

- ★ Tests précis de la loi d'Ampère dans des théories alternatives:
 → dimensions supplémentaires, coupling photon-dilaton, Born-Infeld, etc.
 ★ Etude de faisabilité pour la génération-détection de champs gravitationnels:
 - \rightarrow Time delay, Phase shift
- ★ Couplage laser de haute puissance et électroaimants
 - → Effet Gertsenshtein-Zeldovich : production résonante d'ondes gravitationnelles dans un champ magnétique intense
 - \rightarrow Détection indirecte d'ondes gravitationnelles générées artificiellement
 - Applications:
 - \rightarrow nouveaux tests du principe d'équivalence
 - \rightarrow Physique des magnétars
 - \rightarrow Banc de test pour des détecteurs d'ondes gravitationnelles

